
Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

MET/CAL FLEXIBLE STANDARDS

This paper is divided into three major sections.

Section one covers a brief overview of the definition, purpose and implementation of Flexible
Standards in MET/CAL.

Section two provides the information needed to get MET/CAL setup to run procedures that have been
designed to use the Flexible Standards technique. New procedures provided by Fluke will use the
Flexible Standards technique wherever it is appropriate, particularly in RF procedures where many
different (but equivalent) instruments like counters and signal generators are in wide use.

Section three adds detail on how Flexible Standards is implemented. This information will be required
if you choose to write your own procedures using the Flexible Standards technique. Understanding of
this section will require some knowledge of the MET/CAL procedure language and the use of
sub-procedures.

Section One

What is "Flexible Standards"?

Within a traditional MET/CAL procedure, each standard used to source or measure a tested
parameter must be explicitly defined in the procedure file. This is generally done by including an
appropriate Function Select Code (FSC) in the procedure at each test step requiring the standard.
Most FSC's in MET/CAL are instrument model specific. If you want to use a 5720A for a test step you
use the 5720 FSC in your MET/CAL procedure. Likewise, for a 5520A, use a 5520 FSC, etc.

But suppose you need a procedure that is written to use a PM6680 counter, but your lab owns an
HP5334A instead. You're now faced with two problems. First the procedure will have to be modified to
use the HP5334A. The second problem - which may be harder to overcome - is that MET/CAL doesn't
provide an FSC to control a 5334A. This means that you are now responsible for both the metrology of
the measurement and also for sending control strings to the 5334A from within the procedure.

Even if there is an FSC for the standard you need to substitute into your procedure, you are still
required to edit the procedure file and replace the 6680 lines with the new replacement FSC. Your
challenge in a nutshell...

Is there someone around that knows how to edit a MET/CAL procedure?
Can you find the time it takes to make the substitution?
How will you manage the new procedure version?
If there is no FSC for your standard, you must add control lines in your new procedure.

"Flexible Standards" (FS)provides a solution to this problem.

Flexible Standards is a MET/CAL technique that allows the operator to
interchange any reference instrument with another, specially configured
instrument, of the same functional class without necessitating procedure
modification.

When is the use of Flexible Standards Appropriate?

FS is best suited to those categories of remotely controllable standards which include many different
models with essentially the same functionality. These are the types of instruments that have similar
functional capabilities but each model possibly has different range points, different specifications and,
most probably, has different control commands. Instruments like Signal Generators, Function
Generators and Frequency Counters are prime candidates and are supported with the introduction of
FS in MET/CAL 7.2.

Conceivably, any programmable standard can be configured in MET/CAL as a "Flexible Standard."
But FS is best applied to simpler instruments because of the amount of work required to create and
test the necessary instrument control files.

Limitations of Using Flexible Standards

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

Whenever you use Flexible Standards, you will give up some capabilities of using regular FSC's.

No Editor Based TUR Checking

When using the MET/CAL editor to write or modify procedures, you will not get TUR calculations for
those test steps that use Flexible Standards. The reason, of course is because there is no way to
know what instrument will be used on the final workstation when the procedure is executed.

Choosing an Adequate Standard

The standard that is actually used during the calibration process is determined by whoever configures
the standards for the workstation. This moves the responsibility for choosing an instrument with
sufficient performance to perform the calibration away from the procedure writer.

No State Checking

When an FSC is designed, it is common practice to determine the correct sequence of commands
needed to transition the instrument between states. This is a typical requirement where function
changes require interim commands. Since control of the standard is left to the procedure writer, it is up
to you to add any intermediate commands, resets or delays to switch states of your calibrator properly.

How does Flexible Standards Work?

Overview

The new MET/CAL Flexible Standards feature is implemented with the use of sub-procedures and a
special initialization file (user_config_instr.ini). Interaction between the main calibration procedure and
a FS instrument is directed through a sub-procedure that has been designed to control a specific class
of standards. Parameter values are passed between the main procedure and the driver sub-procedure
using Named Variables. The actual command strings needed to control the FS instrument are stored
in the initialization file with a section dedicated to each specific standard model. The driver
sub-procedure will lookup the required control string from the initialization file and send it to the
physical instrument as needed for the specific test.

How Does MET/CAL Know Which Model to Choose?

In each MET/CAL workstation, instruments that need to be used as Flexible Standards will be
configured just like all the other standards used in the system, but with one addition, the Alias name
will contain the Flexible Standards Class Name. The MET/CAL procedure will contain the Alias name
at each test step that requires the Flexible Standard instrument. MET/CAL's Run Time application will
be able to associate the Alias name with an actual instrument model.

What is a Flexible Standards Class?

The instruments used as flexible standards are grouped into like functionality or classes. A driver
sub-procedure(s) is created for each class. MET/CAL 7.2 includes sub-procedure drivers for the
following pre-defined flexible standards classes that you can use right away. For efficiency reasons,
the included driver sub-procedures have been created as a pair of procedure files; more information is
provided about that later.

The Flexible Standard classes included in MET/CAL 7.2 are:

MET/CAL 7.2 Flexible Standard Classes

NAME CLASS TYPE DRIVER PROC FILES

LFCTR Low Frequency Counter
sub_driver_lfctr.txt
sub_send_cmd_lfctr.txt

HFCTR High Frequency Counter
sub_driver_hfctr.txt
sub_send_cmd_hfctr.txt

UWCTR Microwave Frequency Counter
sub_driver_uwctr.txt
sub_send_cmd_uwctr.txt

DMM Digital Multimeter
sub_driver_dmm.txt
sub_send_cmd_dmm.txt

FGEN Function Generator
sub_driver_fgen.txt
sub_send_cmd_fgen.txt

LFSG Low Frequency Signal Generator
sub_driver_lfsg.txt
sub_send_cmd_lfsg.txt

HFSG High Frequency Signal Generator
sub_driver_hfsg.txt
sub_send_cmd_hfsg.txt

UWSG Microwave Signal Generator sub_get_options_uwsg.txt

LVLG Level Generator
sub_driver_lvlg.txt
sub_send_cmd_lvlg.txt

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

MET/CAL 7.2 Flexible Standard Classes

SWPG Sweep Generator
sub_driver_swpg.txt
sub_send_cmd_swpg.txt

LO Local Oscillator
sub_driver_lo.txt
sub_send_cmd_lo.txt

Section Two

How Do I Prepare MET/CAL to Use Flexible Standards?

Many of the newly developed MET/CAL procedures coming from Fluke use the new FS technique. To
use these new procedures, perform the following steps:

Determine if the instrument you want to use is supported.

You can check Appendix A of this document for a list of instruments you can use with MET/CAL
v7.2.

If a Fluke provided procedure uses a model that is not listed, then a new FS initialization file is
available. If the new file is not provided with the procedure, it will be made available for download
on Fluke's WEB site.

Add your instrument to MET/CAL as "User Configured".

In order for MET/CAL to make the connection
between the standards class name used in the
procedure and the actual instrument you want to
use, you must configure your workstation by adding
your standard. This is done using the Run Time or
Editor application.

Click on [Configure]
Select [Add]
Enter a name for this instrument that matches
one of the model names provided in Appendix
A, exactly.
Fill out the details including

Asset Number
type of remote interface
If IEEE-488, provide address on the bus
Provide an "Alias" value corresponding to a class name appropriate for this flexible
standard. See Appendix A.

Note:
Many instruments used as Flexible Standards can fulfill the requirements of more than one
FS Class. When this is the case, you can use that instrument in both capacities by using the
second Alias name to define the second FS Class.
If your selected instrument is already configured (as "user configured") in your system, you
may retain the Alias name already defined and use the second Alias name to configure it as
a Flexible Standard.

2.

1.

Additions to metcal.ini

In the [startup] section of the metcal.ini file, verify that the following line exists:

rinfdir = C:\metcal

This line specifies where the flexible standards initialization file (user_config_instr.ini) is located.
The actual directory may be different on your system, particularly if you are using a host with
multiple workstations connected. The flexible standards initialization file should be placed where
the main MET/CAL program files are located.

3.

Section Three

Details

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

If you only intend to use FS in procedures supplied from Fluke, you do not need to delve into the
implementation details presented in the following topics.

Typical Usage

As an example of how FS is typically used, we will explore the LFCTR class. There are 5 main actions
needed to use instruments in this class. These are: Initialize, Reset, Measure, Setup and Read. Note
that all of the driver sub-procedures exist in one procedure file. This is possible because each
procedure file can have up to 6 Instrument names. If more than 6 actions are needed for a particular
FS model, the required sub-procedures can be written in as many files as are required. The only
important thing is that the procedure code for each action is contained in its own sub-procedure name.

For the LFCTR class, the relevant sub-procedure names are:

INSTRUMENT: Sub Initialize /LFCTR
INSTRUMENT: Sub Reset /LFCTR
INSTRUMENT: Sub Measure /LFCTR
INSTRUMENT: Sub Setup /LFCTR
INSTRUMENT: Sub Read /LFCTR

Initialize

The first action to be accomplished is Initialize. This action is primarily used to set named memory
variables to an initial state in preparation for controlling the flexible standard and capturing a reading to
be used in a subsequent test evaluation.

Your mainline procedure will call the appropriate sub-procedure to complete the initialization action:
CALL Sub Initialize /LFCTR

Below is the initialization section of the driver sub-procedure Sub Initialize /LFCTR

Code Review for Sub Initialize /LFCTR

Line 2.002 MET/CAL will return the actual model name you have configured in your system with the
alias LFCTR.

Lines 2.003-2.004 Store the section name in the initialization file for the configured LFCTR in memory
variable LFCTR_ProgSecName then transfer that name to MEM2.

Line 2.005 Determine the control type of the configured LFCTR instrument by looking up the values
(IEEE, IEEE2 or SCPI) in the initialization file. Store the value in memory variable LFCTR_FSC.

Lines 2.006 - 2.010 Get the names of terminals on the configured LFCTR instrument from the
initialization file and store those values in named memory variables. This will allow the main procedure
to display accurate connection messages to the user that match the actual instrument used.

Lines 2.011-2.027 Initialize named memory variables for each of the setup parameters required by the
configured LFCTR to enable its operation.

Lines 2.028-2.035 Lookup the proper command to reset the configured LFCTR instrument from the
initialization file.

=============================== Initialize =================================

 2.001 LABEL INITIALIZE
Get and store device name.
 2.002 MATH @LFCTR_DevName = INSTR("LFCTR")

Get and store programming section name.
 2.003 MATH MEM2 = RINFE(@LFCTR_DevName, "ProgSecName")
 2.004 MATH @LFCTR_ProgSecName = MEM2

Get and store FSC.
 2.005 MATH @LFCTR_FSC = RINFE(@LFCTR_ProgSecName, "FSC")

Get and store terminal names.
 2.006 MATH @LFCTR_Ch1 = RINFE(@LFCTR_ProgSecName, "Ch1")
Use RINF instead of RINFE because some counters have only one channel.
 2.007 MATH @LFCTR_Ch2 = RINF(@LFCTR_ProgSecName, "Ch2")
 2.008 MATH @LFCTR_RefIn = RINFE(@LFCTR_ProgSecName, "RefIn")
 2.009 MATH @LFCTR_RefOut = RINFE(@LFCTR_ProgSecName, "RefOut")
 2.010 MATH @LFCTR_ExtArm = RINFE(@LFCTR_ProgSecName, "ExtArm")

Initialize parameters to the empty string (unset).
 2.011 MATH @LFCTR_Func = ""
 2.012 MATH @LFCTR_Ch1Attn = ""
 2.013 MATH @LFCTR_Ch2Attn = ""
 2.014 MATH @LFCTR_Ch1Cpl = ""
 2.015 MATH @LFCTR_Ch2Cpl = ""
 2.016 MATH @LFCTR_Ch1Slope = ""

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

 2.017 MATH @LFCTR_Ch2Slope = ""
 2.018 MATH @LFCTR_Ch1Lvl = ""
 2.019 MATH @LFCTR_Ch2Lvl = ""
 2.020 MATH @LFCTR_Ch1Hyst = ""
 2.021 MATH @LFCTR_Ch2Hyst = ""
 2.022 MATH @LFCTR_Ch1Imp = ""
 2.023 MATH @LFCTR_Ch2Imp = ""
 2.024 MATH @LFCTR_Ch1Lpf = ""
 2.025 MATH @LFCTR_COM = ""
 2.026 MATH @LFCTR_MeasTime = ""
 2.027 MATH @LFCTR_ROSC = ""

Get programming string for RESET FSC.
 2.028 MATH ResetCmd = RINF(@LFCTR_ProgSecName, "ResetFSC")

If ResetFSC is defined, establish the RESET FSC.
 2.029 IF NOT(EMPTY(ResetCmd))

 2.030 IF ZCMPI(ResetCmd, "[SDC]")
 2.031 RESET [@LFCTR][SDC]
 2.032 ELSE
 2.033 RESET [@LFCTR][V ResetCmd]
 2.034 ENDIF

 2.035 ENDIF

See if input termination other than EOI is specified.
 2.036 MATH InputTerm = RINF(@LFCTR_ProgSecName, "TERM")

See CR or LF termination was specified...
 2.037 IF ZCMPI(InputTerm, "CR")
 2.038 IEEE [@LFCTR][TERM CR]
 2.039 ELSEIF ZCMPI(InputTerm, "LF")
 2.040 IEEE [@LFCTR][TERM LF]
 2.041 ENDIF

 2.042 END

Reset

To be sure that the configured LFCTR instrument is in a known reset state, your main procedure will
call the reset driver sub-procedure:

CALL Sub Reset /LFCTR

Below is the reset section of the driver sub-procedure Sub Reset /LFCTR

Code Review for Sub Reset /LFCTR

Lines 3.001-3.005 Store the complete reset command string in named memory variable LFCTR_Cmd,
then call the Sub Send Command /LFCTR to send the reset command to the configured LFCTR
instrument. Noticed this is done by another sub-procedure Sub Send Command /LFCTR. The actual
interaction with the LFCTR instrument has been broken out into its own sub-procedure to allow this
code to be reused in multiple driver sub-procedures without duplicating these procedure steps.

================================= Reset
====================================

 3.001 LABEL RESET
 3.002 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, "Reset")
 3.003 CALL Sub Send Command /LFCTR
 3.004 END

Getting Ready for a Measurement

Now we have all of the named variables loaded with the setup strings needed to send a complete
connection message to the operator in preparation for making a measurement.

Example Main Line procedure

 3.007 DISP Make the following connections:

 3.007 DISP

 3.007 DISP [32] UUT (rear panel) to [V @LFCTR_DevName]

 3.007 DISP [32] REF FREQUENCY OUT ———————> [V @LFCTR_RefIn]

 3.007 DISP

 3.007 DISP [32] UUT (9640A-50) to [V @LFCTR_DevName]

 3.007 DISP [32] Leveling Head ————————> [V @LFCTR_Ch1]

Now measurement parameters will be set in the main line procedure for the type of measurement

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

action we want the configured LFCTR instrument to perform:

Example Main Line procedure

 3.010 MATH @LFCTR_ROSC = "Ext"

 3.011 MATH @LFCTR_MeasTime = "2s"

 3.012 MATH @LFCTR_Func = "FreqCh1"

 3.013 MATH @LFCTR_Ch1Imp = "LoZ"

Measure

Your mainline procedure will call the appropriate sub-procedure to complete the measure action:
CALL Sub Measure /LFCTR

Below is the measure section of the driver sub-procedure Sub Measure /LFCTR

Code Review for Sub Measure /LFCTR

Lines 4.002-4.139 This section examines the values of each setup variable and for non-empty strings,
sends these setup values to the configured LFCTR instrument.

Lines 4.131-4.145 These lines command the configured LFCTR instrument to return a measurement
reading. The "[I]" syntax causes the measurement value is returned to the main line procedure in the
MEM variable.

============================== Setup or Measure ============================

 4.001 LABEL SETUP

----- Function

 4.002 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, @LFCTR_Func)
 4.003 CALL Sub Send Command /LFCTR

----- Measurement Time

 4.004 IF NOT(EMPTY(@LFCTR_MeasTime))
 4.005 MATH Cmd = RINFE(@LFCTR_ProgSecName, "MeasTime")
Convert to base units and insert in programming string.
 4.006 MATH @LFCTR_Cmd = REPL("<val>", BASE(@LFCTR_MeasTime), Cmd)
 4.007 CALL Sub Send Command /LFCTR
 4.008 ENDIF

----- Reference Oscillator

 4.009 IF NOT(EMPTY(@LFCTR_ROSC))

 4.010 IF ZCMPI(@LFCTR_ROSC, "Int")
 4.011 MATH RefOsc = "RefOscInt"
 4.012 ELSE
 4.013 MATH RefOsc = "RefOscExt"
 4.014 ENDIF

 4.015 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, RefOsc)
 4.016 CALL Sub Send Command /LFCTR
 4.017 ENDIF

----- Channel 1 Input Impedance

 4.018 IF NOT(EMPTY(@LFCTR_Ch1Imp))

 4.019 IF ZCMPI(@LFCTR_Ch1Imp, "LoZ")
 4.020 MATH Imp = "Ch1Imp50_Ohm"
 4.021 ELSE
 4.022 MATH Imp = "Ch1Imp1_MOhm"
 4.023 ENDIF

 4.024 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Imp)
 4.025 CALL Sub Send Command /LFCTR
 4.026 ENDIF

----- Channel 1 Input Coupling

 4.027 IF NOT(EMPTY(@LFCTR_Ch1Cpl))

 4.028 IF ZCMPI(@LFCTR_Ch1Cpl, "AC")
 4.029 MATH Cpl = "Ch1CplAC"
 4.030 ELSE
 4.031 MATH Cpl = "Ch1CplDC"
 4.032 ENDIF

 4.033 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Cpl)
 4.034 CALL Sub Send Command /LFCTR
 4.035 ENDIF

----- Channel 1 Input Attenuation

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

 4.036 IF NOT(EMPTY(@LFCTR_Ch1Attn))

 4.037 IF ZCMPI(@LFCTR_Ch1Attn, "x10")
 4.038 MATH Attn = "Ch1Attn_x10"
 4.039 ELSE
 4.040 MATH Attn = "Ch1Attn_x1"
 4.041 ENDIF

 4.042 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Attn)
 4.043 CALL Sub Send Command /LFCTR
 4.044 ENDIF

----- Channel 1 Low-pass Filter

 4.045 IF NOT(EMPTY(@LFCTR_Ch1Lpf))

 4.046 IF ZCMPI(@LFCTR_Ch1Lpf, "On")
 4.047 MATH Lpf = "Ch1LpfOn"
 4.048 ELSE
 4.049 MATH Lpf = "Ch1LpfOff"
 4.050 ENDIF

 4.051 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Lpf)
 4.052 CALL Sub Send Command /LFCTR
 4.053 ENDIF

----- Channel 1 Trigger Slope

 4.054 IF NOT(EMPTY(@LFCTR_Ch1Slope))

 4.055 IF ZCMPI(@LFCTR_Ch1Slope, "Pos")
 4.056 MATH Slope = "Ch1SlopePos"
 4.057 ELSE
 4.058 MATH Slope = "Ch1SlopeNeg"
 4.059 ENDIF

 4.060 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Slope)
 4.061 CALL Sub Send Command /LFCTR
 4.062 ENDIF

----- Channel 1 Trigger Level

 4.063 IF NOT(EMPTY(@LFCTR_Ch1Lvl))
 4.064 MATH Cmd = RINFE(@LFCTR_ProgSecName, "Ch1TrigLevel")
 4.065 MATH @LFCTR_Cmd = REPL("<val>", BASE(@LFCTR_Ch1Lvl), Cmd)
 4.066 CALL Sub Send Command /LFCTR
 4.067 ENDIF

----- Channel 1 Trigger Hysteresis

 4.068 IF NOT(EMPTY(@LFCTR_Ch1Hyst))
 4.069 MATH Cmd = RINFE(@LFCTR_ProgSecName, "Ch1TrigHyst")
 4.070 MATH @LFCTR_Cmd = REPL("<val>", BASE(@LFCTR_Ch1Hyst), Cmd)
 4.071 CALL Sub Send Command /LFCTR
 4.072 ENDIF

----- Channel 2 Input Impedance

 4.073 IF NOT(EMPTY(@LFCTR_Ch2Imp))

 4.074 IF ZCMPI(@LFCTR_Ch2Imp, "LoZ")
 4.075 MATH Imp = "Ch2Imp50_Ohm"
 4.076 ELSE
 4.077 MATH Imp = "Ch2Imp1_MOhm"
 4.078 ENDIF

 4.079 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Imp)
 4.080 CALL Sub Send Command /LFCTR
 4.081 ENDIF

----- Channel 2 Input Coupling

 4.082 IF NOT(EMPTY(@LFCTR_Ch2Cpl))

 4.083 IF ZCMPI(@LFCTR_Ch2Cpl, "AC")
 4.084 MATH Cpl = "Ch2CplAC"
 4.085 ELSE
 4.086 MATH Cpl = "Ch2CplDC"
 4.087 ENDIF

 4.088 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Cpl)
 4.089 CALL Sub Send Command /LFCTR
 4.090 ENDIF

----- Channel 2 Input Attenuation

 4.091 IF NOT(EMPTY(@LFCTR_Ch2Attn))

 4.092 IF ZCMPI(@LFCTR_Ch2Attn, "x10")
 4.093 MATH Attn = "Ch2Attn_x10"
 4.094 ELSE
 4.095 MATH Attn = "Ch2Attn_x1"
 4.096 ENDIF

 4.097 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Attn)
 4.098 CALL Sub Send Command /LFCTR

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

 4.099 ENDIF

----- Channel 2 Trigger Slope

 4.100 IF NOT(EMPTY(@LFCTR_Ch2Slope))

 4.101 IF ZCMPI(@LFCTR_Ch2Slope, "Pos")
 4.102 MATH Slope = "Ch2SlopePos"
 4.103 ELSE
 4.104 MATH Slope = "Ch2SlopeNeg"
 4.105 ENDIF

 4.106 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Slope)
 4.107 CALL Sub Send Command /LFCTR
 4.108 ENDIF

----- Channel 2 Trigger Level

 4.109 IF NOT(EMPTY(@LFCTR_Ch2Lvl))
 4.110 MATH Cmd = RINFE(@LFCTR_ProgSecName, "Ch2TrigLevel")
 4.111 MATH @LFCTR_Cmd = REPL("<val>", BASE(@LFCTR_Ch2Lvl), Cmd)
 4.112 CALL Sub Send Command /LFCTR
 4.113 ENDIF

----- Channel 2 Trigger Hysteresis

 4.114 IF NOT(EMPTY(@LFCTR_Ch2Hyst))
 4.115 MATH Cmd = RINFE(@LFCTR_ProgSecName, "Ch2TrigHyst")
 4.116 MATH @LFCTR_Cmd = REPL("<val>", BASE(@LFCTR_Ch2Hyst), Cmd)
 4.117 CALL Sub Send Command /LFCTR
 4.118 ENDIF

----- Channel 2 COM (2 via 1)

 4.119 IF NOT(EMPTY(@LFCTR_COM))

 4.120 IF ZCMPI(@LFCTR_COM, "Off")
 4.121 MATH Com = "Ch2ComOff"
 4.122 ELSE
 4.123 MATH Com = "Ch2ComOn"
 4.124 ENDIF

 4.125 MATH @LFCTR_Cmd = RINFE(@LFCTR_ProgSecName, Com)
 4.126 CALL Sub Send Command /LFCTR
 4.127 ENDIF

Exit here if Setup.
 4.128 IF PSUBI("Setup")
 4.129 END
 4.130 ENDIF

Drop through for Measure.

============================== Read or Measure ============================

 4.131 LABEL READ
See if there is an initiate command.
 4.132 MATH @LFCTR_Cmd = RINF(@LFCTR_ProgSecName, "Initiate")

If there is an initiate command, send it.
 4.133 IF NOT(EMPTY(@LFCTR_Cmd))
 4.134 CALL Sub Send Command /LFCTR
 4.135 ENDIF

See if there is a fetch command.
 4.136 MATH @LFCTR_Cmd = RINF(@LFCTR_ProgSecName, "Fetch")

If there is no fetch command simply get the reading.
 4.137 IF EMPTY(@LFCTR_Cmd)
 4.138 IEEE [@LFCTR][I]
Otherwise send the fetch command and get the reading.
 4.139 ELSEIF ZCMPI(@LFCTR_FSC, "SCPI")
 4.140 SCPI [@LFCTR][V @LFCTR_Cmd][I]
 4.141 ELSEIF ZCMPI(@LFCTR_FSC, "IEEE2")
 4.142 IEEE2 [@LFCTR][V @LFCTR_Cmd][I]
 4.143 ELSE
 4.144 IEEE [@LFCTR][V @LFCTR_Cmd][I]
 4.145 ENDIF

 4.146 END

Appendix A - Instruments Supported as Flexible Standards

Flexible Standard Instruments in MET/CAL 7.2

Model FS Class

Agilent 33220A FGEN

Agilent 33250A FGEN

Agilent 53131A LFCTR

Agilent 53132A LFCTR

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

Flexible Standard Instruments in MET/CAL 7.2

Agilent 53181A
LFCTR
HFCTR

Agilent E4400A HFSG

Agilent E4400B HFSG

Agilent E4420A HFSG

Agilent E4420B HFSG

Agilent E4421A HFSG

Agilent E4421B HFSG

Agilent E4422A HFSG

Agilent E4422B HFSG

Agilent E4423B HFSG

Agilent E4424B HFSG

Agilent E4425B HFSG

Agilent E4426B HFSG

Agilent E4430B HFSG

Agilent E4431B HFSG

Agilent E4432B HFSG

Agilent E4433B HFSG

Agilent E4434B HFSG

Agilent E4435B HFSG

Agilent E4436B HFSG

Agilent E4437B HFSG

Agilent E4438C HFSG

Agilent E8247C UWSC

Agilent E8257C UWSC

Agilent E8257D UWSC

Agilent E8267C UWSC

Agilent E8267D UWSC

Fluke 45 DMM

Fluke 80 FGEN

Fluke 81 FGEN

Fluke 271 FGEN

Fluke 281 FGEN

Fluke 282 FGEN

Fluke 6060A HFSG

Fluke 6060A/AN HFSG

Fluke 6060B HFSG

Fluke 6061A HFSG

Fluke 6062A HFSG

Fluke 6080A HFSG

Fluke 6082A HFSG

Fluke 8840A DMM

Fluke 8842A DMM

Fluke 9640A

LFSG
LVLG
HFSG
SWPG

Fluke PM 6690 LFCTR

HP 3325A FGEN

HP 3325B FGEN

HP 3335A LVLG

HP 3336A LVLG

HP 3336B LVLG

HP 3336C LVLG

HP 5334A LFCTR

HP 5350A UWCTR

HP 5350B UWCTR

HP 5350M UWCTR

HP 5351A UWCTR

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

Flexible Standard Instruments in MET/CAL 7.2

HP 5351B UWCTR

HP 5351M UWCTR

HP 5352A UWCTR

HP 5352B UWCTR

HP 5352M UWCTR

HP 8340A SWPG

HP 8340B SWPG

HP 8341A SWPG

HP 8341B SWPG

HP 8642A
HFSG
UWSG

HP 8642B
HFSG
UWSG

HP 8643A
HFSG
UWSG

HP 8644A
HFSG
UWSG

HP 8644B
HFSG
UWSG

HP 8645A
HFSG
UWSG

HP 8647A
HFSG
UWSG

HP 8648A
HFSG
UWSG

HP 8648B
HFSG
UWSG

HP 8648C
HFSG
UWSG

HP 8648D
HFSG
UWSG

HP 8656A
HFSG
UWSG

HP 8656B
HFSG
UWSG

HP 8657A
HFSG
UWSG

HP 8657B
HFSG
UWSG

HP 8662A
HFSG
UWSG

HP 8663A
HFSG
UWSG

HP 8664A<
HFSG
UWSG

HP 8665A
HFSG
UWSG

HP 8665B
HFSG
UWSG

HP 8671A
HFSG
UWSG

HP 8671B
HFSG
UWSG

HP 8672A
HFSG
UWSG

HP 8672S
HFSG
UWSG

HP 8673B
HFSG
UWSG

HP 8673D
HFSG
UWSG

HP 8673C
HFSG
UWSG

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

Flexible Standard Instruments in MET/CAL 7.2

HP 8673D
HFSG
UWSG

HP 8673E
HFSG
UWSG

HP 8673G
HFSG
UWSG

HP 8673H
HFSG
UWSG

HP 33120A FGEN

HP 34401A DMM

HP 83620A
HFSG
UWSG
SWPG

HP 83620B
HFSG
UWSG
SWPG

HP 83622A
HFSG
UWSG
SWPG

HP 83622B
HFSG
UWSG
SWPG

HP 83623A
HFSG
UWSG
SWPG

HP 83623B
HFSG
UWSG
SWPG

HP 83624A
HFSG
UWSG
SWPG

HP 83624B
HFSG
UWSG
SWPG

HP 83630A
HFSG
UWSG
SWPG

HP 83630B
HFSG
UWSG
SWPG

HP 83640A
HFSG
UWSG
SWPG

HP 83640B
HFSG
UWSG
SWPG

HP 83642A
HFSG
UWSG
SWPG

HP 83650A
HFSG
UWSG
SWPG

HP 83650B
HFSG
UWSG
SWPG

HP 83711A
HFSG
UWSG

HP 83711B
HFSG
UWSG

HP 83712A
HFSG
UWSG

HP 83712B
HFSG
UWSG

HP 83731A
HFSG
UWSG

Flexible Standards Dialog file:///D:/Projects/Metbase/Release.720/Papers/FlexStds/flex_dialog.html

Flexible Standard Instruments in MET/CAL 7.2

HP 83731B
HFSG
UWSG

HP 83732A
HFSG
UWSG

HP 83732B
HFSG
UWSG

HP 83751A
HFSG
UWSG

HP 83751B
HFSG
UWSG

HP 83752A
HFSG
UWSG

HP 83752B
HFSG
UWSG

Marconi 2023 HFSG

Marconi 2024 HFSG

Philips PM 6680 LFCTR

Philips PM 6681 LFCTR

Philips PM 6685 LFCTR

Rohde & Schwarz SMY02 HFSG

Rohde & Schwarz SMY03 HFSG

Rohde & Schwarz SMY43 HFSG

Tabor 8550 FGEN

Tabor 8551 FGEN

Wavetek 39A FGEN

Wavetek 80 FGEN

Wavetek 81 FGEN

Wavetek 195 FGEN

Wavetek 395 FGEN

Wavetek 900 LFCTR

Wavetek 901 LFCTR

Wavetek 905 LFCTR

